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Model Misspeci�cation

Probability of facts and of theories

Probability of facts and of theories

Decisions�consequences depend on external factors
(contingencies)

Probability of contingencies

Probabilistic theories on contingencies (e.g., generative
mechanisms, DGP)

Thinking over such theories

Environments with uncertainty through the guise of models
(e.g., policy making)

Decision making under model uncertainty
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Savage Decision problems

Savage Decision problems

A decision problem consists of

a space F of acts f : S ! C

a space C of material (e.g., monetary) consequences

a space S of environment states

The quartet (F ,S ,C ,%) is a Savage decision problem under
uncertainty

If C is a convex subset of a vector space, this quartet takes
the Anscombe-Aumann form

We abstract from state misspeci�cation issues (e.g.,
unforeseen contingencies)



Model Misspeci�cation

Probability models

Probability models

∆ is the set of probability measures on S

DMs posit a set Q of structured (probability) models q 2 ∆
on states, with a substantive motivation or scienti�c
underpinnings

Each q describes a possible DGP, so it represents physical
uncertainty (risk)
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Probability models

Probability models

DMs thus posit a model space Q in addition to the state
space S

When the model space is based on experts�advice, its
nonsingleton nature may re�ect di¤erent advice

Denti and Pomatto (2019) came up with a behavioral
counterpart of Q

To ease matters, Q is a convex and compact subset of ∆σ
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Uncertainty: a taxonomy

Uncertainty: a taxonomy

The quintet (F ,S ,C ,Q,%) forms a classical decision problem
under uncertainty

If DMs know that the correct model belongs to Q, they
confront model ambiguity (or uncertainty)

If DMs know the correct model within Q, they confront risk
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Uncertainty: a taxonomy

Uncertainty: a taxonomy

In this setup, we can decompose uncertainty in three distinct layers:

(Model) risk: uncertainty within a model q

Model ambiguity or uncertainty: uncertainty across models in
Q

Model misspeci�cation: uncertainty about models (the correct
model does not belong to the posited set Q)
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Model misspeci�cation: Relevance

Model misspeci�cation: Relevance

Do data reveal DGPs and so speak, by and large, for
themselves?

If so, model misspeci�cation is a minor issue

Is theoretical reasoning needed to interpret empirical
phenomena?

If so, model misspeci�cation is a major issue
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Model misspeci�cation: Issues

Model misspeci�cation: Issues

There is no decision criterion that accounts for model
misspeci�cation concerns

Models with agents confronting model misspeci�cation are
unable to address agents�misspeci�cation concerns (they even
use expected utility preferences)
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Model misspeci�cation

Model misspeci�cation

Suppose that DMs confront model misspeci�cation

At the time of decision, they are afraid that none of the
posited structured models is correct
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Model misspeci�cation (Hansen and Sargent, 2020)

Model misspeci�cation (Hansen and Sargent, 2020)

The DM contemplates also unstructured models p 2 ∆ in
ranking actions according, for example, to a conservative
decision criterion

V (f ) = min
p2∆

�Z
u (f ) dp + λmin

q2Q
R(pjjq)

�
λ > 0 is an index of misspeci�cation fear

The relative entropy R (�jj�) is an index of statistical distance
between models (structured or not)

So, minq2Q R(pjjq) is an Hausdor¤ �distance�between p and
Q

We have minq2Q R(pjjq) > 0 i¤ p /2 Q
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A protective belt

A protective belt

Unstructured models lack the substantive status of structured
models, they are essentially statistical artifacts

In this variational criterion, they act as a protective belt
against model misspeci�cation
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Model ambiguity: back to Wald 1950

Model ambiguity: back to Wald 1950

The higher λ is, the lower the misspeci�cation fear is

If λ = +∞, the criterion takes a maxmin form

V (f ) = min
q2Q

Z
u (f ) dq

and we are back to model ambiguity

Without misspeci�cation fear, the DM would maxminimize
over structured models

No prior beliefs (cf. general maxmin analysis of Gilboa and
Schmeidler, 1989)
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Multiplier criterion

Multiplier criterion

If Q is a singleton fqg, so no model ambiguity, we have the
multiplier criterion

V (f ) = min
p2∆

�Z
u (f ) dp + λR(pjjq)

�

Under the protective belt interpretation, it is the criterion of
an expected utility DM who fears model misspeci�cation
(about the unique posited model)
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General form

General form

In general, a decision criterion under model misspeci�cation is

V (f ) = min
p2∆

�Z
u (f ) dp +min

q2Q
c (p, q)

�
Here c : ∆�Q ! [0,∞] is a statistical distance (for the set
Q), with c (p, q) = 0 i¤ q = p

E.g., the relative entropy R(�jj�) or, more generally, a Csiszar
φ-divergence Dφ(�jj�)

We have minq2Q c(pjjq) > 0 i¤ p /2 Q
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Box and bets

Box and all that

Structured models may be incorrect, yet useful as Box (1979)
famously remarked

Formally, betting behavior must be consistent with datum Q,
i.e.,

q (F ) � q (E ) 8q 2 Q =) �bet on F�% �bet on E�

Under bet-consistency, a DM may fear model misspeci�cation
yet regards structured models as good enough to choose to
bet on events that they unanimously rank as more likely
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Mild model misspeci�cation

Mild model misspeci�cation

A mild form of fear of model misspeci�cation

PROP The decision criterion

V (f ) = min
p2∆

�Z
u (f ) dp + λmin

q2Q
R(pjjq)

�
is bet-consistent

The result continues to hold for any φ-divergence Dφ(pjjq)
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Misspeci�cation neutrality

Misspeci�cation neutrality

A preference % is misspeci�cation neutral ifZ
u (f ) dq �

Z
u (g) dq 8q 2 Q =) f % g

for all acts f and g

In this case, for decision-theoretic purposes fear of
misspeci�cation plays no role

We are back to aversion to model ambiguity
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Misspeci�cation neutrality

Misspeci�cation neutrality

PROP A preference % represented by the decision criterion

V (f ) = min
p2∆

�Z
u (f ) dp +min

q2Q
c (p, q)

�
is misspeci�cation neutral i¤ it is represented by the maxmin
criterion

V (f ) = min
q2Q

Z
u (f ) dq

This con�rms behaviorally that the maxmin criterion
corresponds to aversion to model ambiguity, with no fear of
misspeci�cation.
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A tale of two preferences

A tale of two preferences

We axiomatize this criterion within a two-preference setup a la
Gilboa et al. (2010), in an Anscombe-Aumann setting

A dominance relation %� represents the DM �genuine�
preference on acts, so it is typically incomplete

A behavioral preference % governs choice, so it is complete
(burden of choice)
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Rational preference

Rational preference

A.1 A preference % is (subjectively) rational if it is:

(a) complete

(b) risk independent: if x , y , z 2 X and α 2 (0, 1), then x � y
implies αx + (1� α) z � αy + (1� α) z

Risk independence implies that % on X (e.g., on lotteries) is
represented by an a¢ ne (e.g., expected) utility function
u : X ! R
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Dominance relation

Dominance relation

A.2 A preference %� on F is a dominance relation (or is
objectively rational) if it is:

(a) c-complete: if x , y 2 X , then x %� y or y %� x

(b) completess: when Q is a singleton, f %� g or g %� f for all
f , g 2 F

(c) weak c-independent: if f , g 2 F , x , y 2 X , and α 2 (0, 1),

αf +(1� α)x %� αg +(1� α)x ) αf +(1� α)y %� αg +(1� α)y

(d) convex: if f , g , h 2 F and α 2 (0, 1),

f %� h and g %� h) αf + (1� α) g %� h
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Dominance relation

Dominance relation

Model ambiguity (i.e., a nonsingleton Q) underlies the
incompleteness of %�

Because of model misspeci�cation, %� satis�es only a weak
form of independence (even when Q is a singleton)
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Consistency

Consistency

A.3 Preferences %� and % are consistent if

f %� g =) f % g

for all f , g 2 F
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Caution

Caution

A.4 Preferences %� and % satisfy caution if

f 6%� x =) x % f

for all x 2 X and all f 2 F

DM opts, by default, for a sure alternative x over an uncertain
one f , unless the dominance relation says otherwise



Model Misspeci�cation

Q-Coherent (objective)

Q-Coherent (objective)

We write f
Q
= g when q (f = g) = 1 for all q 2 Q

A.5 A dominance relation %� on F is (objectively)
Q-coherent if

f
Q
= g =) f �� g
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Q-Coherent (subjective)

Q-Coherent (subjective)

Given a model p 2 ∆, de�ne a consequence xpf 2 X for each
act f via the equality

u(xpf ) =
Z
u (f ) dp

We can interpret xpf as the �certainty� equivalent of act f if p
were the correct model
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Q-Coherent (subjective)

Q-Coherent (subjective)

A.6 A rational preference % is (subjectively) Q-coherent if,
for all f 2 F and all x 2 X , we have

x �� xpf =) x � f

if and only if p 2 Q

A probability p is a structural model when DMs take it
seriously, i.e., they never choose acts that would be strictly
dominated if p were correct
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Divergences

Divergences

Given a (non-empty) subset Q of ∆, a function c : ∆�Q ! [0,∞]
is a divergence (for the set Q) if

(i) the sections cq : ∆ ! [0,∞] are grounded, lsc and convex for
each q 2 Q

(ii) the function cQ : ∆ ! [0,∞] de�ned by

cQ (p) = min
q2Q

c (�, q)

is well de�ned, grounded, lsc and convex

(iii) c�1Q (0) = Q, that is, cQ (p) = 0 if and only if p 2 Q
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Statistical distances

Statistical distances

A divergence c that satis�es the distance property

c (p, q) = 0() p = q

is called statistical distance

cQ (p) is now an Hausdo¤-type statistical distance between p

and Q
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Representation

Representation

THM Let (S ,Σ,X ,Q,%�,%) be a two-preference classical
decision environment. The following statements are equivalent:

(i) %� is a unbdd dominance relation and % is a rational
preference that are both Q-coherent and jointly satisfy consistency
and caution;
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Representation

Representation

(ii) there exist an onto a¢ ne function u : X ! R and a divergence
c : ∆�Q ! [0,∞], with dom cQ � ∆ (Q), such that, for all acts
f , g 2 F ,

f %� g , min
p2∆

�R
u(f ) dp + c (p, q)

�
� min
p2∆

�R
u(g) dp + c (p, q)

�
for all q 2 Q, and

f % g,min
p2∆

�R
u(f ) dp + min

q2Q
c (p, q)

�
�min
p2∆

�R
u (g) dp + min

q2Q
c (p, q)

�

If, in addition, c is uniquely null, then c : ∆�Q ! [0,∞] can be
chosen to be a statistical distance.
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Representation

Representation

This result identi�es the main preferential assumptions
underlying a representation

V (f ) = min
p2∆

�Z
u (f ) dp +min

q2Q
c (p, q)

�
where c : ∆�Q ! [0,∞] is a statistical distance

Let %1 be %2 represented by this criterion with same u

%1 is more uncertainty averse than %2 i¤

min
q2Q

c1 (�, q) � min
q2Q

c2 (�, q)
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Representation

Representation

The function
p 7! min

q2Q
c (p, q)

as an index of aversion to model misspeci�cation, for short, a
misspeci�cation index

The lower is this index, the higher is the fear of
misspeci�cation
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Varying structured information

Varying structured information

So far, a given set Q of structured models

We should write �
S ,Σ,X ,%�Q ,%Q

�
with the dependence of preferences on Q highlighted

Yet, decision environments may share common state and
consequence spaces, but di¤er on the posited sets of
structured models because of di¤erent information that DMs
may have

Need of decision criteria that, across such environments, are
consistent
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Varying structured information

Varying structured information

Let Q be the family of convex and compact subsets of ∆σ

Consider a family ��
S ,Σ,X ,%�Q ,%Q

�	
Q2Q

of decision environments that di¤er in the set Q of posited
models

Introduce axioms that connect these environments
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Varying structured information

Varying structured information

A.7 The family
�
%�Q
	
Q2Q is monotone (in model ambiguity) if

Q 0 � Q implies, for all f , g 2 F ,

f %�Q g =) f %�Q 0 g

If the �structured� information underlying a set Q is good
enough for the DM to establish that an act dominates another
one, a better information which decreases model ambiguity
can only con�rm such judgement

Its reversal would be at variance with the objective rationality
spirit of the dominance relation
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Varying structured information

Varying structured information

A.8 The family
�
%�Q
	
Q2Q is Q-separable if, for each f , g 2 F

and x 2 X ,

8q 2 Q, f %�q g =) f %�Q g

If, without model ambiguity, an act unanimously dominates
another one according to each model q in Q, so does under
model ambiguity when Q is the set of structured models

No model in Q supports a reversal of this dominance
judgement
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Varying structured information

Varying structured information

Previous axioms imply that %�Q agree on X

We thus just write %�
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Varying structured information

Varying structured information

Denote by xf ,q the certainty equivalent of act f for preference
%�q

A.7 Model hybridization aversion. Given any q, q0 2 ∆σ,

λxf ,q + (1� λ) xf ,q 0 %� xf ,λq+(1�λ)q 0

for all λ 2 (0, 1) and all f 2 F

DM dislikes, ceteris paribus, facing a hybrid structured model
λq + (1� λ) q0 that, by mixing two structured models q and
q0, could only have a less substantive motivation
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Varying structured information

Varying structured information

THM Let ��
S ,Σ,X ,%�Q ,%Q

�	
Q2Q

be a family of two-preference classical decision environments. The
following statements are equivalent:

(i)
�
%�Q
	
Q2Q is monotone, Q-separable and, for each Q 2 Q, the

preferences %�Q and %Q satisfy the hypotheses of Theorem 1;
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Varying structured information

Varying structured information

(ii) there exist an onto a¢ ne function u : X ! R and a lsc and
convex statistical distance c : ∆� ∆σ ! [0,∞], with
dom cQ � ∆ (Q) for each Q 2 Q, such that, for all acts f , g 2 F ,

f %�Q g , min
p2∆

�Z
u (f ) dp + c (p, q)

�
� min
p2∆

�Z
u (g) dp + c (p, q)

�
for all q 2 Q, and

f %Q g , min
p2∆

�Z
u (f ) dp + min

q2Q
c (p, q)

�
� min
p2∆

�Z
u (g) dp + min

q2Q
c (p, q)

�

Moreover, u is unique up to a positive a¢ ne transformation and,
given u, c is unique
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To be continued

To be continued

Bayesian analysis

Dynamic analysis

Applications
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